📗
elisp manual zh
  • LAND OF LISP
  • 引言
  • 进度 & 计划
  • 一些记录
  • Lisp 数据类型
    • 2 Lisp 数据类型
    • 2.1 打印表示 和 读取语法
    • 2.2 特定的读取语法
    • 2.3 注释
    • 2.4 编程类型
      • 2.4.1 整型
      • 2.4.2 浮点型
      • 2.4.3 字符型
        • 2.4.3.1 基本字符语法
        • 2.4.3.2 通用转义语法
        • Page 2
        • Page 3
        • Page 4
        • Page 1
      • 2.4.4 符号类型
      • 2.4.5 序列类型
      • 2.4.6 点对类型
        • 2.4.6.1 点对可视化
        • 2.4.6.2 点对记法
        • 2.4.6.3 关联列表
      • 2.4.7 数组类型
      • 2.4.8 字符串类型
        • 2.4.8.1 字符串的语法
        • 2.4.8.2 字符串中的非ASCII码
        • 2.4.8.3 不可打印字符
        • 2.4.8.4 字符串的文本属性
      • 2.4.9 向量类型
      • 2.4.10 字符表类型
      • 2.4.11 布尔向量类型
      • 2.4.12 哈希映射类型
      • 2.4.13 函数类型
      • 2.4.14 宏类型
      • 2.4.15 原函数类型
      • 2.4.16 字节码类型
      • 2.4.17 记录类型
      • 2.4.18 类型描述符
      • 2.4.19 自动加载类型
      • 2.4.20 终止类型
    • 2.5 编辑类型
      • 2.5.1 缓冲区变量
      • 2.5.2 标记类型
      • 2.5.3 窗口类型
      • 2.5.4 框架类型
      • 2.5.5 终端类型
      • 2.5.6 窗口配置类型
      • 2.5.7 框架配置类型
      • 2.5.8 进程类型
      • 2.5.9 线程类型
      • 2.5.10 互斥锁类型
      • 2.5.11 条件变量类型
      • 2.5.12 流类型
      • 2.5.13 按键映射类型
      • 2.5.14 覆盖类型
      • 2.5.15 字体类型
    • 2.6 循环结构对象
    • 2.7 类型谓语
    • 2.8 相等谓语
    • 2.9 可变性
  • 数字
    • 3.1 整型数
    • 3.2 浮点型基础
    • 3.3 谓词:数字相关
    • 3.4 数字比较
    • 3.5 数字类型转换
    • 3.6 数学变换
    • 3.7 取整
    • 3.8 位运算
    • 3.9 数学函数
    • 3.10 随机数
  • 字符串 和 字符
    • 4 字符串和字符
    • 4.1 字符串基础
    • 4.2 谓语:字符串相关
    • 4.3 创建字符串
    • 4.4 修改字符串
    • 4.5 字符串比较
    • 4.6 字符串转换
    • 4.7 字符串格式化
    • 自定义格式化
    • Case Conversion
    • Case Table
  • 列表
    • 5 列表
    • 5.1 列表与点对
    • 5.2 列表相关的谓词
    • 5.3 列表元素的存取
    • 5.4 列表与点对的构建
    • 5.5 列表变量的修改
    • 5.6 列表结构的修改
    • 5.7 列表和集合的使用
    • 5.8 关联列表 Association Lists (alist)
    • 5.9 属性列表 Property Lists (plist)
  • 序列, 数组, 和 向量
    • 6 序列、数组、以及向量
    • 6.1 序列
    • 6.2 数组
    • 6.3 数组相关函数
    • 6.4 向量
    • 6.5 向量相关函数
    • 6.6 字符表
    • 6.7 布尔向量
    • 6.8 大小固定的对象环的管理
  • 记录
    • 7 记录
    • 7.1记录相关函数
    • 7.2 向后兼容
  • 哈希表
    • 8 哈希表
    • 8.1 哈希表创建
    • 8.2 哈希表存取
    • 8.3 哈希表定制
    • 8.4 其他哈希表相关函数
  • 符号
    • 9 符号(3/4)
    • 9.1 符号的组成(DONE)
    • 9.2 定义符号(DONE)
    • 9.3 创建(Creating)并注册(Interning)符号(DONE)
    • 9.4 符号属性
      • 9.4.1 存取符号属性(DONE)
      • 9.4.2 标准符号属性
  • 求值
    • 10 求值(DONE)
    • 10.1 表达式类型(DONE)
      • 10.2.1 自求值表达式(DONE)
      • 10.2.2 符号表达式(DONE)
      • 10.2.3 列表表达式(DONE)
      • 10.2.4 函数符号转义(DONE)
      • 10.2.5 函数表达式求值(DONE)
      • 10.2.6 Lisp 宏求值(DONE)
      • 10.2.7 特殊表达式(DONE)
      • 10.2.8 自动加载(DONE)
    • 10.2 引用(Quoting)(DONE)
    • 10.3 反引用(DONE)
    • 10.4 Eval(求值)(DONE)
    • 10.5 延迟求值(DONE)
  • 控制结构
    • 11. 控制结构
    • 11.1 顺序执行(DONE)
    • 11.2 条件判断(DONE)
    • 11.3 条件组合结构(DONE)
    • 11.4 模式匹配(TODO)
    • 11.5 迭代(DONE)
    • 11.6 生成器(DONE)
    • 11.7 非局部退出
      • 11.7.1 显式非局部退出:catch 和 throw
      • 11.7.2 catch 和 throw 的例子
      • 11.7.3 错误
        • 11.7.3.1 如何传递出一个错误
        • 11.7.3.2 Emcas 的错误处理流程
        • 11.7.3.3 编写错误处理函数
        • 11.7.3.4 错误符号和条件名
      • 11.7.4 非局部退出后的清理工作
  • 变量
    • 12 变量
    • 12.1 全局变量
    • 12.2 常量变量
    • 12.3 局部变量
    • 12.4 无效(Void)变量
    • 12.5 定义全局变量
    • 12.6 定义变量的建议
    • 12.7 变量获取
    • 12.8 变量设置
    • 12.9 变量监视
      • 12.9.1 限制
    • 12.10 变量作用域规则
      • Untitled
      • 12.10.1 动态绑定
      • 12.10.2 动态绑定的建议
      • 12.10.3 词法绑定
      • 12.10.4 如何正确的使用词法绑定
    • 文件变量
    • 目录变量
    • 通信变量
    • 变量别名
    • 变量限制
    • 泛型变量
  • 函数
    • 13 函数
    • 13.1 函数是什么?(DONE)
    • 13.2 Lambda 表达式(WORKING)
      • 13.2.1 lambda表达式的组成部分
      • 13.2.2 一个简单的lambda表达式例子
      • 13.2.3 参数列表的特性
      • 13.2.4 函数的文档字符串
    • 13.3 函数命名
    • 13.4 函数定义
    • 13.5 函数调用
    • 13.6 函数映射式调用
    • 13.7 匿名函数
    • 13.8 泛型函数
    • 13.9 读取函数槽信息
    • 13.10 闭包
    • 13.11 Emacs Lisp 函数最佳实践
    • 13.12 声明废弃函数
    • 13.13 内联函数
    • 13.14 declare 表达式
    • 13.15 告知编译器某函数已定义
    • 13.16 函数安全调用
    • 13.17 有关函数的其他主题
  • 宏
    • Untitled
  • 自定义设置
  • 加载脚本
  • 字节码编译
  • 调试 Lisp 代码
  • 读取和打印
    • 19.1 读取与打印简介
    • 19.2 输入流
    • 19.3 输入函数
    • 19.4 输出流
    • 19.5 输出函数
    • 19.6 输出变量
  • Mini Buffer
  • Loop 循环
  • 按键绑定
  • Modes
  • 23.1 钩子
    • 23.1.1 运行钩子
    • 23.1.2 设置钩子
  • 23.2
  • Untitled
  • Untitled
  • Untitled
  • Untitled
  • 文档
    • Untitled
  • 文件访问
    • Untitled
  • 备份 及 自动保存
    • Untitled
  • Buffers
    • Untitled
  • 窗口
    • Untitled
  • 框架
    • Untitled
  • 位置
    • Untitled
  • 标记
    • Untitled
  • 文本
    • 32 文本
      • 32.1 位置点附近 (Near Point)
      • 32.2 缓冲区内容 (Buffer Contents)
  • 非 ASCII 字符
    • Untitled
  • 搜索 和 匹配
    • Untitled
  • 语法表
    • Untitled
  • 缩写 及 缩写拓展
    • 34 搜索 与 替换
      • 34.1 文本搜索
  • 进程
    • Untitled
  • 线程
    • Untitled
  • Emacs 显示
    • Untitled
  • 操作系统接口
    • Untitled
  • 标准错误
    • Untitled
  • 标准按键映射
    • Untitled
  • 标准 Hooks
    • Untitled
  • Tip & Conventions
    • Untitled
  • 索引
    • Untitled
  • 附录
    • Untitled
    • 附录 H: 标准钩子
由 GitBook 提供支持
在本页

这有帮助吗?

  1. 数字

3.8 位运算

在计算机中,整数使用二进制数、位序列(零或一的数字)表示。从概念上讲,左边的位序列是无限的,最高有效位全为零或全为 1。按位运算会作用于此类序列的各个位。例如, 位移操作 会将整个序列向左或向右移动一个或多个位置。

Emacs Lisp 中的按位运算仅适用于整数。

Function:ash integer1 count ash(算术移位) 将integer1 中的位向左边移动count 位,如果count为负则向右移动。左移会在右边引入零位;右移则会丢弃最右边的位。视为等价的整数运算, ash将integer1乘以 2 的 count 次方,然后通过向下舍入将结果转换为整数。

以下是ash将位模式向左和向右移动一位的示例。这些示例仅显示二进制模式的低位;前导位都与所示的最高位一致。如您所见,左移一相当于乘以二,而右移一相当于除以二,然后向下舍入取整。

(ash 7 1) ⇒ 14 ;; Decimal 7 becomes decimal 14. …000111 ⇒ …001110

(ash 7 -1) ⇒ 3 …000111 ⇒ …000011

(ash -7 1) ⇒ -14 …111001 ⇒ …110010

(ash -7 -1) ⇒ -4 …111001 ⇒ …111100

以下是向左或向右移动两位的示例:

              ;         binary values

(ash 5 2) ; 5 = …000101 ⇒ 20 ; = …010100 (ash -5 2) ; -5 = …111011 ⇒ -20 ; = …101100 (ash 5 -2) ⇒ 1 ; = …000001 (ash -5 -2) ⇒ -2 ; = …111110

Function:lsh integer1 count lsh,是logic shift的缩写,将integer1左移count位,如果count为负,则右移,使用 0 补位。如果 count为负,则integer1必须是 fixnum 或正的 bignum。此外,lsh 将 fixnum 连减两次 most-negative-fixnum ,将其处理为为无符号数字。这种古怪的行为可以追溯到 Emacs 只支持 fixnums 的时候。现在使用 ash 是更好的选择。

lsh的行为和ash很像,但当 integer1和 count1均为负时,以下的例子仅出现在这些特殊情况下。这些示例假定使用 30 位 fixnums。

             ;      binary values

(ash -7 -1) ; -7 = …111111111111111111111111111001 ⇒ -4 ; = …111111111111111111111111111100 (lsh -7 -1) ⇒ 536870908 ; = …011111111111111111111111111100 (ash -5 -2) ; -5 = …111111111111111111111111111011 ⇒ -2 ; = …111111111111111111111111111110 (lsh -5 -2) ⇒ 268435454 ; = …001111111111111111111111111110

Function:logand &rest ints-or-markers 此函数将参数进行按位与操作。

例如,使用 4 位二进制数,13 和 12 按位 与 结果为 12:1101 与 1100 按位 与 的 1100。在这两个二进制数中,最左边的两位都是 1,因此返回值的最左边的两位都是 1。但是,对于最右边的两位,其中一个参数是 0,因此返回值的最右边两位都是 0。

因此,

(logand 13 12) ⇒ 12 如果logand未传递任何参数,则返回值 -1。这个是一个logand的单位数字,因为它的二进制表示完全由 1 组成。如果只传递一个参数,则返回该参数。

               ;        binary values

(logand 14 13) ; 14 = …001110 ; 13 = …001101 ⇒ 12 ; 12 = …001100

(logand 14 13 4) ; 14 = …001110 ; 13 = …001101 ; 4 = …000100 ⇒ 4 ; 4 = …000100

(logand) ⇒ -1 ; -1 = …111111

Function:logior &rest ints-or-markers 该函数对参数进行按位或运算。如果没有参数,则结果为 0,这是此操作的恒定元素。如果只传递一个参数,则返回该参数。

               ;        binary values

(logior 12 5) ; 12 = …001100 ; 5 = …000101 ⇒ 13 ; 13 = …001101

(logior 12 5 7) ; 12 = …001100 ; 5 = …000101 ; 7 = …000111 ⇒ 15 ; 15 = …001111

Function:logxor &rest ints-or-markers 此函数将参数按位异或。如果没有参数,则结果为 0,这是此操作的恒定元素。如果只传递一个参数,则返回该参数。

               ;        binary values

(logxor 12 5) ; 12 = …001100 ; 5 = …000101 ⇒ 9 ; 9 = …001001

(logxor 12 5 7) ; 12 = …001100 ; 5 = …000101 ; 7 = …000111 ⇒ 14 ; 14 = …001110

Function:lognot integer 此函数将参数按位补码。结果和整数 -1 等价。

(lognot 5) ⇒ -6 ;; 5 = …000101 ;; becomes ;; -6 = …111010

Function:logcount integer 该函数返回整数的汉明权重:在那些的二进制表示的数量的整数。如果integer为负数,则返回其二进制补码表示中的零位数。结果总是非负的。

(logcount 43) ; 43 = …000101011 ⇒ 4 (logcount -43) ; -43 = …111010101 ⇒ 3

上一页3.7 取整下一页3.9 数学函数

最后更新于3年前

这有帮助吗?